education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2020

MARKS: 150

III.

TIME: 3 hours

This question paper consists of 11 pages and an information sheet.

.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

The total number of red cards issued per country to players during a soccer competition are given in the table below:

NUMBER OF RED CARDS	NUMBER OF COUNTRIES (f)	MIDPOINT OF INTERVAL (x)	<i>f</i> . <i>x</i>
$0 < x \leq 2$	27		
$2 < x \leq 4$	15		
$4 < x \leq 6$	5		
$6 < x \le 8$	5		
$8 < x \le 10$	3		
TOTAL			

	A Dealer A A A Dealer	[8]
1.3	Calculate the interquartile range of the number of red cards issued per country in the competition.	(2)
1.2	Draw an ogive curve to represent the above data.	(3)
1.1	Calculate the estimated mean of the number of red cards per country.	(3)

QUESTION 2

The table below shows a relationship between the monthly rent (x) a person pays for an apartment and the person's monthly income (y). Both are given in thousands of rands.

YEAR	2003	2004	2005	2006	2007	2008
Rent (x)	2	3	3,5	5,2	5,6	6
Income ((y) 9	13,5	15	16,5	17	20
	Determine the equation			r month is R900		(4)
	Calculate the value of	h Hann 199		i monui is ic>00		(2)
2.4 I	Describe the relationsh	ip between the 1	nonthly rent and	l the monthly in	come.	(2)

In the diagram KLMN is a quadrilateral with K(4; 10), L(1; 1), M(4; 0) and N(8; 2).

3.1	Determine the:	
	3.1.1 gradient of LM and MN	(4)
	3.1.2 length of KM.	(2)
	3.1.3 value of θ	(2)
	3.1.4 midpoint of LN	(2)
3.2	Show that $KL \perp LM$	(3)
3.3	Prove that KLMN is a cyclic quadrilateral.	(4) [17]

5 NSC - Grade 12

QUESTION 4

In the sketch below, AB is a diameter with coordinates A(3; 2) and B(-5; 4) of circle ABC. M is the centre of the circle. BC produced meets AT in T. N(2; -2) is a point on the line TA. C is the y – intercept of the circle.

4.1	Determine the co-ordinates of M the centre of the circle	(2)
4.2	Write down the equation of the circle in the form $(x-p)^2 + (y-q)^2 = r^2$	(3)
4.3	Prove that TA is a tangent to the circle at A.	(5)
4.4	Determine the equations of the lines	
	4.4.1 TA and	(4)
	4.4.2 BT	(6)
4.5	If the coordinates of T are $(a; b)$, calculate the values of a and b.	(3)
		[23]

6 NSC - Grade 12

5.1	Without using a calculator, evaluate	
	$\cos 79^{\circ} \cos 311^{\circ} + \sin 101^{\circ} \sin 49^{\circ}$	(4)
5.2	Given: $sin(x + y) = 3 sin(x - y)$	
	Prove that: $\tan x = 2 \tan y$	(4)
5.3	Given: $\frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x$	
	5.3.1 Prove that $\frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x$	(4)
	5.3.2 Hence, solve for x where $x \in [0^\circ; 360^\circ]$:	
	$1 + 2\cos 2x = \frac{\cos 2x}{2\sin x} - \frac{\cos x}{\sin 2x}$	(6)
		[18]

QUESTION 6

In the diagram, the graphs of $f(x) = a \sin bx$ and $g(x) = c \cos dx$ are drawn for the interval $x \in [-90^\circ; 360^\circ]$

Determine the values of a, b, c and d. 6.1

6.2 Write down the period of g.

Determine the value(s) of x in the interval $x \in [-90^{\circ}; 360^{\circ}]$, for which 6.3

6.3.1
$$f(x) \le g(x)$$
(2)6.3.2 $f'(x) \times g'(x) > 0$ where $g(x) > 0$ (3)Copyright ReservedPlease turn over

(4)

(1)

7 NSC - Grade 12

to O such that T lies on the line PO

[10]

QUESTION 7

In the diagram P, Q and R are three points in the same horizontal plane. PR = QR = m, $Q\hat{P}R = x$. SP is perpendicular to PQ. The angle of elevation of S from Q is y.

7.1	Express the area of $\triangle PQR$ in terms of x and m.	(5)
7.2	Show that $PQ = 2m \cos x$	(4)
7.3	Hence, prove that $SP = 2m \cos x \tan y$	(2)
		[11]

8.1 In the diagram below △ KLM is given, with P and Q lying on KL and KM respectively such that PQ || LM. PM and LQ are drawn.

Prove that
$$\frac{KP}{PL} = \frac{KQ}{QM}$$

(6)

In
$$\triangle APQ$$
, $\frac{AB}{AP} = \frac{AC}{AQ}$.

Use the above information to prove:

8.2.1	$-\hat{A}_2 = \hat{T}_1$	(4)
8.2.2	ΔΑΒС /// ΔΤCQ	(4)
8.2.3	ABTQ is a cyclic quadrilateral.	(4)
8.2.4	Prove that TQ is a tangent to circle TBC at T.	(5)
	and any a 20 ment of a 100 ment and 307 to 1 ment	[23]

In the diagram, M is the centre of the circle through A, B and C. É is on AC. AC bisects MCB and EB bisects MBC. $\hat{B}_2 = x$

9.1	Determine the size of \hat{E}_2 in terms of x.	(4)
9.2	Show $BAC = 90^{\circ} - 2x$	(3)
9.3	Prove that AE is a diameter of circle ABE.	(5)
		[12]

10.1 In the diagram XMN is a straight line and XT is a tangent to the circle. Y is a point on XN so that XY = XT.

Prove that:

	10.1.1 YT bisect MTN.	(5)
	$10.1.2 \frac{XM}{XT} = \frac{XT}{XN}$	(6)
10.2	Given that MY = 20 mm, YN = 50 mm and $XT = k$ mm:	
	10.2.1 Express XM in terms of k .	(3)

- 10.2.2 Calculate the length of k. (4)
 - [18]

TOTAL MARKS: 150

Mathematics P2

12 NSC - Grade 12

INFORMATION SHEET: MATHEMATICS

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ A &= P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n \\ T_n &= a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d) \\ T_n &= ar^{n-1} \qquad S_n = \frac{d(r^n - 1)}{r-1} \quad ; \quad r \neq 1 \qquad S_\infty = \frac{a}{1-r}; \; -1 < r < 1 \\ F &= \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i} \\ f^n(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ y &= mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta \\ (x-a)^2 + (y-b)^2 = r^2 \\ In \; \Delta AB\widetilde{C}: \; \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A \qquad area \; \Delta ABC = \frac{1}{2}ab \sin\theta \\ \sin(\alpha + \beta) &= \sin\alpha .\cos\beta + \cos\alpha .\sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha .\cos\beta - \cos\alpha .\sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha .\cos\beta - \sin\alpha .\sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha .\cos\beta + \sin\alpha .\sin\beta \\ \cos(2\alpha) &= \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \end{aligned}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})}{n}$$

P(A or B) = P(A) + P(B) - P(A and B)

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

 $\overline{x} = \frac{\sum f.x}{n}$ $P(A) = \frac{n(A)}{n(S)}$

 $\hat{y} = a + bx$